Package: dapper 1.0.1

dapper: Data Augmentation for Private Posterior Estimation

A data augmentation based sampler for conducting privacy-aware Bayesian inference. The dapper_sample() function takes an existing sampler as input and automatically constructs a privacy-aware sampler. The process of constructing a sampler is simplified through the specification of four independent modules, allowing for easy comparison between different privacy mechanisms by only swapping out the relevant modules. Probability mass functions for the discrete Gaussian and discrete Laplacian are provided to facilitate analyses dealing with privatized count data. The output of dapper_sample() can be analyzed using many of the same tools from the 'rstan' ecosystem. For methodological details on the sampler see Ju et al. (2022) <doi:10.48550/arXiv.2206.00710>, and for details on the discrete Gaussian and discrete Laplacian distributions see Canonne et al. (2020) <doi:10.48550/arXiv.2004.00010>.

Authors:Kevin Eng [aut, cre, cph]

dapper_1.0.1.tar.gz
dapper_1.0.1.zip(r-4.5)dapper_1.0.1.zip(r-4.4)dapper_1.0.1.zip(r-4.3)
dapper_1.0.1.tgz(r-4.4-any)dapper_1.0.1.tgz(r-4.3-any)
dapper_1.0.1.tar.gz(r-4.5-noble)dapper_1.0.1.tar.gz(r-4.4-noble)
dapper_1.0.1.tgz(r-4.4-emscripten)dapper_1.0.1.tgz(r-4.3-emscripten)
dapper.pdf |dapper.html
dapper/json (API)
NEWS

# Install 'dapper' in R:
install.packages('dapper', repos = c('https://mango-empire.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mango-empire/dapper/issues

On CRAN:

3.70 score 1 stars 4 scripts 147 downloads 6 exports 58 dependencies

Last updated 25 days agofrom:8fc658e027. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winOKOct 29 2024
R-4.5-linuxOKOct 29 2024
R-4.4-winOKOct 29 2024
R-4.4-macOKOct 29 2024
R-4.3-winOKOct 29 2024
R-4.3-macOKOct 29 2024

Exports:dapper_sampleddlaplaceddnormnew_privacyrdlaplacerdnorm

Dependencies:abindbackportsbayesplotcachemcheckmateclicodetoolscolorspacedigestdistributionaldplyrfansifarverfastmapfurrrfuturegenericsggplot2ggridgesglobalsgluegtableisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixmatrixStatsmemoisemgcvmunsellnlmenumDerivparallellypillarpkgconfigplyrposteriorprogressrpurrrR6RColorBrewerRcppreshape2rlangscalesstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr